
Nuclear Magnetic 
Resonance

       Relaxation, Exchange & Multi-Dimensional NMR



What we learned last week
• The Vector Model of Pulsed FT NMR



Objectives
• Learn about multi-pulse NMR 

• Determine the effect of molecular dynamics on 
NMR spectra



What Happens After a Pulse? Relaxation 
After a pulse, the system will oscillate under Larmor 
precession, but it must inevitably return to equilibrium.

The longitudinal component (i.e. that aligned with the 
field (here z)) relaxes towards the equilibrium value (a 
non-zero value) M0.

The transverse components both relax back to zero.

Evolution of Mz towards equilibrium modifies the total 
energy of the system: there must be exchange of 
energy with the lattice.

Relaxation of the transverse components does not 
modify the total energy.

We thus distinguish longitudinal relaxation (or spin-
lattice relaxation), T1, from transverse relaxation (or 
spin-spin relaxation) relaxation, T2.

 

     

     



Dances with Spins: Inversion-Recovery 

πx π/2x t2
τ

180° pulse around the 
+x axis of the rotating frame

delay for a time τ

90° pulse around the 
+x axis of the rotating frame

acquisition of a signal for a time t2

delay for a time τ

In general a pulse sequence consists of multiple pulses and delays

[Note that these timing diagrams are usually not to scale: for example, in this case the radiofrequcency pulses 
are around 10 - 20 microseconds long, the delay τ can on the order of 0.1 to 10 seconds, and the signal is 
acquired for a time t2 of between 0.1 and 1.0 second.]
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πx π/2x t2

τ

α0Mz -α0Mz α(τ)Mz α(τ)Mx α(τ)(Mzcos(Ωt2) + Mysin(Ωt2)) 

longitudinal relaxation (T1)

if relaxation during τ follows a monoexponential 

recovery towards equlibrium: α(τ) = α0(1 - 2exp(τ/T1)) 

Ω = ω0 - ωrf 



Dances with Spins: Inversion-Recovery 

     
πx π/2x t2

τ

if relaxation during τ follows a monoexponential 

recovery towards equlibrium: α(τ) = α0(1 - 2exp(τ/T1)) 

z

x
y

z

x
y

z

x
y

z

x
y

α0

α(τ)

x

y

α0

α(τ)
φ = Ωt2



Dances with Spins: Inversion-Recovery 

πx π/2x t2
τ

Multiple-pulse NMR: Measurement of Longitudiunal Relaxation Times (T1)

1H T1 measurement for 
1,3 dinitrobenzene.

 The T1 values found by fitting the  
 measured intensities to T1 are: 

 The principal
source of relaxation is the 
1H–1H dipolar interactions 

between adjacent protons on 
the ring. The relaxation rates 

are in the order H5 > H4, H6 > H2  
because the numbers of 

nearest neighbour protons 
are, respectively, 2, 1, and 0.

For each peak, i, in the spectrum:  
Ii(τ) = Ii

0(1 - 2exp(τ/T1))

8.6 s (H2), 5.1 s (H4, H6), and 1.7 s (H5).



Dances with Spins: The Spin Echo 
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Dances with Spins: The Spin Echo 



The Hahn Echo
https://en.wikipedia.org/wiki/Spin_echo



The Hahn Echo
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Multiple-Pulse NMR:
Measurement of Transverse Relaxation Rates (T2)

Dances with Spins: The Spin Echo 



The Hahn Echo
https://en.wikipedia.org/wiki/Spin_echo

The Hahn echo sequence can be used to measure the transverse relaxation time, T2.
The intensity of the echo formed at time 2t will decay as a function of t independently 
of any precesion frequencies present during t delays (i.e. different chemical shifts).
A series of measurements with different 2t can then be fit to extract values of T2 for 
each peak in the spectra (analogously to the way we measured T1.)



Dances with Spins: The Spin Echo 

T2

Multiple pulse NMR: Measurement of Transverse Relaxation Times (T2)

rf τ 2τ 2τ 2τ 2τ 2τ 2τ

π/2 π π π π π π

narrow distribution 
of chemical shifts

broad distribution 
of chemical shifts



Conclusions: Part I
• T1 and T2 relaxation will tend to return the system to 

equilibrium 

• Typically of the order of 10 ms —> 100 seconds 

• The magnetisation dynamics is expressed by the 
Bloch equations 

• T1 can measured by the inversion-recovery pulse 
sequence 

• T2 can be measured by the spin-echo



Objectives
• Learn why exchange is a central idea in Chemistry. 

• Determine how exchange can be observed in NMR 
spectra over different timescales. 

• Provide a quantitative framework to describe 
exchange in NMR.



Why is Exchange so Important?

More Generally, “Exchange” = Motion 

Motion = Chemistry
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Why is Motion so Important?







https://www.youtube.com/watch?v=ckTqh50r_2w

https://www.youtube.com/watch?v=ckTqh50r_2w


Timescales of Motion

ps ns s ms s 

Spin relaxation 

Dipolar, scalar couplings, chemical shifts 

Lineshape/exchange 

Real-time NMR 

Relaxation dispersion 

ps ns μs ms s

librational motions
overall


tumbling

collective (domain) motions

enzyme catalysis

signal transduction


ligand binding


spin relaxation

dipolar, scalar couplings, chemical shifts

relaxation dispersion

lineshape/exchange

real-time NMR

protein folding

hinge bending




Timescales of MotionTimescales of Motion



Determining Exchange by NMR

Consider a spectrum consisting of two singlets belonging to the two inequivalent 
methyl carbon nuclei in the molecule shown.
In the absence of exchange it yields the above spectrum. 
(This is often referred to as the low temperature spectrum. (Here 50 °C))

1. If the exchange rate kAB << Δω (the slow motion regime): there is no effect on 
the spectrum.

ωA ωB



Determining Exchange by NMR

Consider a spectrum consisting of two singlets belonging to the two inequivalent 
methyl carbon nuclei in the molecule shown.
If the temperature is increased, rotation around the C-N is activated.

2. If the exchange rate kAB  >> Δω (the fast motion regime): we observe only the 
average of the two lines, which yields a single narrow line at (ωA + ωB)/2.

low temperature spectrum
(here 50°C) 

high temperature spectrum 
(here 193 °C)



Determining Exchange by NMR

3. If the exchange rate kAB  ~ Δω (the intermediate motion regime): what 
happens?

low temperature spectrum
(here 50°C) 

high temperature spectrum 
(here 193 °C)



Determining Exchange by NMR
NMR is sensitive to exchange processes on three distinct timescales: 

1. FAST (10-12 < tc < 10-5 s)

2. INTERMEDIATE (10-5 < tc < 10-2 s)

3. SLOW (10-2 < tc < 102 s)

And we use three different techniques to access dynamic 
information in the three regimes: 

1. FAST : relaxation times
2. INTERMEDIATE : lineshapes/positions
3. SLOW : 2D Exchange Spectroscopy



Determining Exchange by NMR



Modified Bloch Equations
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Determining Exchange from Lineshapes

Experimental 13C spectra of 13C-enriched
N,N’-dimethylformamide gas at a set of different 
temperatures in a field of 4.7 T.  
B. D. Ross and N. S. True, J. Am. Chem.
Soc. 106, 2451 (1984).

In the intermediate regime, as the rate increases (with increasing temperature)
the lines first broaden, then they coalesce, and then the line narrows to 
a single resonance at the average frequency.



Motional Broadening

How the behaviour of individual spins accounts for the form of the spectra for an A ⇋ B exchange system. The top 
part shows the contributions from four typical spins. Underneath, labelled FID, is the sum of the contributions (from 
1000 spins). Beneath each FID is shown the corresponding spectrum. 

In slow exchange the number of transformations between A and B are rather few so distinct periods of oscillation 
at the two Larmor frequencies can be seen. The result is two clear lines in the spectrum. In intermediate exchange 
the transformations are more frequent, and as a result the contributions of the individual spins quickly cancel one 
another out, leading to a quickly decaying FID and broad lines in the spectrum. In fast exchange the 
transformations are so frequent that each spin appears to be evolving at the average frequency. The individual 
contributions do not significantly cancel, leading to a sharper line.

intermediate exchange fast exchangeslow exchange

time

frequency

spin 1

spin 2

spin 3

spin 4

FID

spin 1

spin 2

spin 3

spin 4

FID

A B

from Keeler



Determining Exchange from Lineshapes

Rates can be determined by numerically solving the modified Bloch equations with 
parameters that match the experiment, and by finding the values of the rate that produce 
a matching calculated NMR spectrum. 

Here we show calculated NMR spectra for a pair of nuclei exchanging between two sites 
with equal populations (symmetrical two-site exchange). Spectra are shown for a range 
of values of the exchange rate constant k. The difference in resonance frequencies of the 
two sites, δν, is 50 Hz. The linewidths in the absence of exchange are 1 Hz.



Determining Exchange from Lineshapes

Calculated NMR spectra for a pair of nuclei exchanging between two sites A and B
with populations in the ratio pB/pA = 2 (unsymmetrical two-site exchange). Spectra are 
shown for a range of values of the mean rate constant (kA + kB)/2. The difference in 
resonance frequencies of the two sites, δν, is 50 Hz. The linewidths in the absence of 
exchange are 1 Hz.



Determining Exchange from Lineshapes

  
 

13C spectra of N,N’-dimethylformamide gas at 4.7 T. 
B. D. Ross and N. S. True, J. Am. Chem. Soc, 106 2451 (1984). 

 

experiment

Fitting each spectrum to a rate, using the modified Bloch equations
and with the chemical shifts and intrinsic linewidths measured in
the low temperature spectrum, yields the rate at each temperature

numerical simulation

k (s-1)

373

264

156

55.2

457

538

763

1085



Determining Exchange by NMR

For an activated process the Arrhenius equation is: k = A exp(Ea/RT) where A is a 
pre-exponential factor and Ea is the activation energy for the process. Ea can be 
determined from the slope of a plot of 1/T vs ln(k) (called an Arrhenius plot).

Here we find Ea = 74 kJ/mol for C-N bond rotation in N, N’-dimethylformamide gas.

Activation energy of C-N bond rotation in  
N, N’-dimethylformamide gas.

B. D. Ross and N. S. True,  
J. Am. Chem. Soc. 106, 2451 (1984).
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Conclusions
• NMR is sensitive to exchange in different ways depending on the

exchange timescale.

• Intermediate exchange directly affects line shapes in the spectra.
This can be evaluated quantitatively using the Bloch-McConnell
Equations for a network of N exchanging sites.

• As kex increases, averaging of the exchanging frequencies first
produces line broadening (kex < ΔAB) and then leads to line
narrowing (kex > ΔAB).

• Measuring the rate as a function of temperature yields the
activation energy for the exchange process.

• NMR can measure exchange rates in samples at equilibrium.



Objectives
• How can we measure slow exchange processes? 

• Principles of two-dimensional NMR 

• Two-dimensional Exchange Spectroscopy (EXSY)



Timescales of Motion

ps ns s ms s 

Spin relaxation 

Dipolar, scalar couplings, chemical shifts 

Lineshape/exchange 

Real-time NMR 

Relaxation dispersion 
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Determining Exchange by NMR

1. If the exchange rate kAB << Δω (the slow motion regime): there is no effect on 
the spectrum.

ωA ωB



B1

B0
B0

Mz

what does the signal actually look like?



     

     

How does the detection period work  
in the ordinary experiment? 

time

frequency

Fourier
transform

time
domain

frequency
domain

I ω( ) = S t( )exp −iωt! #dtȺ
The Fourier transform is a mathematical process which turns a time-
domain signal, the FID, into a frequency-domain signal, the spectrum.



     

     

How does the Fourier Transform work? 
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× × ×

I ω( ) = S t( )exp −iωt! #dtȺ
The FID, shown along the top, is multiplied by trial cosine functions of known frequency to give a product function. The area under this product function corresponds to the intensity in the 
spectrum at the frequency of the cosine wave. Three cases are shown. In (a) the trial cosine is at 15 Hz which matches the oscillation in the FID; as a result the product function is 
always positive and the area under it is a maximum. In (b) the trial frequency is 17 Hz; now the product function has positive and negative excursions, but on account of the decay of the 
FID, the area under the trial function is positive, although smaller than the area in case (a). The intensity of the spectrum at 17 Hz is therefore less than at 15 Hz. Finally, in (c) the trial 
frequency is 30 Hz; the product function oscillates quite rapidly about zero so that the area under it is essentially zero. As a result, the intensity in the spectrum at this frequency is zero.
The spectrum is generated by plotting the area under the product function against the frequency of the corresponding trial cosine wave
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How does the Fourier Transform work? 

I ω( ) = S t( )exp −iωt! #dtȺ
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How does the Fourier Transform work? 

I ω( ) = S t( )exp −iωt! #dtȺ



Signal Lifetimes vs. Linewidths 
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Δ = 1/πT2*

FT

FT

The line width in the spectrum (Δ) is inversely proportional to the decay 
time of the signal (T2*). (This is a manifestation of the uncertainty 
principle)



Lineshapes in NMR 

y (imag.)

x (real)
Ωt

S0 
exp(-t
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Sx (real)

Sy (imag.)

(1)



Lineshapes in NMR 

y (imag.)

x (real)
Ωt

S0 
exp(-t

 
/
 
T2)

S0

time

S0

Sx (real)

Sy (imag.)

Not surprisingly, if we start with a complex time-domain signal, Fourier 
transformation gives a complex frequency-domain signal or spectrum. 
Normally, the software on the spectrometer only displays the real part of 
this complex spectrum, but it is important to realize that the imaginary part 
exists, even if it is not displayed. 

Fourier transformation of the complex time-domain signal of Eq. 1 on 
the previous slide gives a complex frequency-domain signal, or spectrum 
S(ω):  

The real part of the spectrum is a peak with the absorption mode Lorentzian 
lineshape, whereas the imaginary part has the dispersion mode Lorentzian 
lineshape 

real imaginary

20 4 6 8 10 12 20 4 6 8 10 12

frequency / Hz

1/R

1/(2R)
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W = 3.7 R/π
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absorption dispersion
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absorption dispersion
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W = R/π
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(a) (b)
absorption dispersion

real (absorption)

imaginary (dispersion)

1/T2 = R = 1Hz

FT



Phase of the NMR Signal 

Sx Sy

Sx Sy

Sx Sy
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φ = π/4
φ = 0

φ = π/2 φ = π

(a) (b)

(c) (d)

Obviously the x and y components of the signal can be interchanged. For example, 
after π/2x pulse, the magnetisation will start at My for t = 0, and the absorption signal 
will be found in the imaginary component. (A phase shift of π/2). After a π/2-y pulse the 
magnetisation will start at -Mx for t = 0; the absorption signal will be in the real 
component, but it will be negative.



Phase Corrections 

un-phased

φcorr = -60°

φcorr = -70°

φcorr = -75°

φcorr = -80°

φcorr = -90°

offset frequency0

0

- +

- +

- +
0

(a)

(b)

(c)

offset frequency

offset frequency

φ co
rr
 =

 k
 Ω

slope = k

The phase can be “corrected” by multiplying the signal by exp(iΦcorr). 

In addition to an overall constant phase correction factor (a zero-order 
phase correction) The phase correction often varies (linearly) with offset, 
we then apply a phase correction that is proportional to offset (a first-
order phase correction). 

The result is a spectrum where the pure absorption mode is obtained 
for all the peaks in the real part of the spectrum.



     

     

How does the detection period work  
in the ordinary experiment? 

(a)

(b) time

The amplitude of the FID varies smoothly as a function of time.

In order to be able to manipulate this time-domain signal in a computer, the 
signal is digitized at regular intervals.

I ω( ) = S ti ti( )exp −iω! #dtȸ
i = 1

N



Principles of Multi-Dimensional Spectroscopy 
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t2
1st experiment, t1 = 0
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PREP. EVOLUTION MIX DETECTION

t2

t1

t2
1st experiment, t1 = 0

2nd experiment, t1 = Δt



Principles of Multi-Dimensional Spectroscopy


t1

PREP. EVOLUTION MIX DETECTION

t2

t1

t2
1st experiment, t1 = 0

2nd experiment, t1 = Δt

3rd experiment, t1 = 2Δt

nth experiment, t1 = (n-1)Δt

We can fill a two-dimensional time domain with data by repeating the 
experiment, with acquisition along t2 in each experiment, and with t1 
being incremented progressively from one experiment to the next.



Principles of Multi-Dimensional Spectroscopy 

t1

PREP. EVOLUTION MIX DETECTION

t2

t1

t2

I ω1,ω2( ) = s t1, t2( )exp −i ω1t1 + ω2t2( )! #dt1dt2ȺȺ

A two-dimensional frequency domain 
(ω1, ω2), can be obtained by two-
dimensional Fourier transformation of 
the data with respect to t1 and t2.

2D FT
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ω2

ω1

In two-dimensional NMR each peak has two frequency coordinates, measured 
along the ω1 and ω2 axes, corresponding to the precession frequencies 
experience during the periods t1 and t2 respectively. 
Two-dimensional NMR spectra are usually presented as contour plots in which points of equal intensity are joined by lines, just as in a 
topographic map.
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2D FT

Principles of Multi-Dimensional Spectroscopy 

t1

PREP. EVOLUTION MIX DETECTION
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t2

I ω1,ω2( ) = s t1, t2( )exp −i ω1t1 + ω2t2( )! #dt1dt2ȺȺ

A two-dimensional frequency domain 
(ω1, ω2), can be obtained by two-
dimensional Fourier transformation of 
the data with respect to t1 and t2.

  2D FT  

2D NMR spectra typically consist of “diagonal peaks” at ω1 = ω2 and “cross 
peaks” at ω1 ≠ ω2 such that cross peaks occur at frequencies that link the 
resonance frequencies of different nuclei in the spectrum. 
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Two-Dimensional Exchange Spectroscopy (EXSY) 

     

     

1H t� τm
t2

ILUVW�ʌ���SXOVH�H[FLWHV
SURWRQ�FRKHUHQFH

t1�HYROXWLRQ�XQGHU
1+�FKHPLFDO�VKLIW

VHFRQG�ʌ���SXOVH�FRQYHUWV�FRKHUHQFH
WR�ORQJLWXGLQDO�PDJQHWL]DWLRQ�

t��HYROXWLRQ�XQGHU
1+�FKHPLFDO�VKLIW

WKLUG�ʌ���SXOVH�H[FLWHV�
SURWRQ�FRKHUHQFH�DIWHU�Ĳ�SHULRG�����

The EXSY experiment yields a correlation between resonances of protons that are
exchanging on a timescale comparable to τm



Two-Dimensional Exchange Spectroscopy (EXSY)

Contour plot of the expanded 
‘aromatic region’ of a 2D EXSY 1H 
NMR spectrum (700 MHz, D2O, 
pH 6.5) with τm = 100 ms of a 1:1 
mixture of the disulfide and the 
thiol shown (30 mM total 
concentration). A 1D spectrum of 
the mixture is shown on the 
vertical and horizontal projections.

adapted from Bracchi & Fulton, “Orthogonal breaking and 
forming of dynamic covalent imine and disulfide bonds in 
aqueous solution.” Chem. Commun., 51, 11052 (2015).
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Two-Dimensional Exchange Spectroscopy (EXSY) 

     

1H chemical shift (ppm) (ω2)

1H chemical shift (ppm)

One-dimensional proton NMR spectrum of the organometallic compound [ReBr(CO)3(Me2-bppy)], where bppy denotes 
2,6-bis(pyrazol-1-yl)pyridine.

Twice as many peaks as there are types of different protons in the molecule! Must be a second species?

Intensities suggest a 3:1 ratio in concentration between the major and the minor species. Is the second species an 
impurity, or is it a second product in slow exchange?



Two-Dimensional Exchange Spectroscopy (EXSY) 

     
1H t� τm

t2

ILUVW�ʌ���SXOVH�H[FLWHV
SURWRQ�FRKHUHQFH

t1�HYROXWLRQ�XQGHU
1+�FKHPLFDO�VKLIW

VHFRQG�ʌ���SXOVH�FRQYHUWV�FRKHUHQFH
WR�ORQJLWXGLQDO�PDJQHWL]DWLRQ�

t��HYROXWLRQ�XQGHU
1+�FKHPLFDO�VKLIW

WKLUG�ʌ���SXOVH�H[FLWHV�
SURWRQ�FRKHUHQFH�DIWHU�Ĳ�SHULRG�����

Proton two-dimensional exchange spectrum of the organometallic fluxional compound [ReBr(CO)3(Me2-bppy)], where 
bppy denotes 2,6-bis(pyrazol-1-yl)pyridine. The mixing interval was τm = 0.1 s. The off-diagonal peaks may be interpreted 
in terms of an exchange of the metal atom between two pairs of nitrogen binding sites. 
Adapted from E. W. Abel, et al., J. Chem. Soc. Dalton Trans., 1079 (1994).
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Recall: Modified Bloch Equations



Longitudinal Exchange in EXSY
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Longitudinal Exchange in EXSY
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IBA Ѭm( ) = 1
2 1ïexp ï2kѬm{ }[ ]exp ïѬm T1{ }MA0
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amplitudes
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For a 2 spin system, the 2x2 dynamic matrix leads to an analytical solution, and for a symmetrical
case we obtain:



Longitudinal Exchange in EXSY

Abridged Abstract: The 300-kDa cylindrical protease ClpP is an important 
component of the cellular protein quality machinery. It consists of 14 subunits 
arranged into two heptameric rings that enclose a large chamber containing the 
protease active sites. ClpP associates with ClpX and ClpA ATPases that unfold and 
translocate substrates into the protease catalytic chamber through axial pores 
located at both ends of the ClpP cylinder. Although the pathway of substrate 
delivery is well established, the pathway of product release is unknown. Here, 
we show that the interface between the heptameric rings exchanges between 
two structurally distinct conformations. The conformational exchange 
process has been quantified by magnetization exchange experiments 
recorded between 0.5°C and 40°C, so that the thermodynamic properties for 
the transition could be obtained. Restriction of the observed motional freedom in 
ClpP through the introduction of a cysteine linkage results in a protease where 
substrate release becomes significantly slowed relative to the rate observed in the 
reduced enzyme, suggesting that the observed motions lead to the formation of 
transient side pores that may play an important role in product release.



Quantitative Analysis of EXSY Spectra 

     

Homework: Read & Understand from this paper (pdf on Moodle) how one can go from the 2D exchange spectra to the 
activation energies



Conclusions
• The Fourier transform integrates the time-domain signal to provide the intensity of each 

frequency contained in the signal. 

• The longer the signal lasts, the narrower the spectral line will be. 

• The complex time domain signal yields a complex (real & imaginary) spectrum, in which 
the signals have a particular phase. The signal is digitised for storage in the computer. 

• We can add another dimension to the time-domain to obtain a spectrum with frequencies 
correlated between t1 and t2: a “preparation - evolution - mixing - detection” approach. 

• Acquisition of the two time domains is achieved by repeating the experiment for different 
values of t1. 

• 2D Exchange Spectroscopy can used to observe slow chemical exchange. 

• 2D EXSY spectra can be analysed quantitatively to obtain exchange rates and 
thermodynamic parameters.



Homework
Each group should jointly finalise and upload 

their answers to their jigsaws.

Learn the course material




